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Particular cases provide us guidance in both the formulation and
comprehension of general laws.

Lawler’'s Focus: Learning through Interaction

It is remarkable in Feynman's discussion that something so familiar as
reflection from a mirror is a pathway into solving the deepest puzzles of
physics, as in wave-particle duality.!® And yet, why be surprised ? Insights
are usually a reconceptualization of familiar affairs. Learning is something we
have all experienced personally for long periods of time, something we see in
others all the time. There are epistemological and psychological reasons to
believe that a case-based approach is better suited than lab-based methods
for gathering information about developmental issues, such as the character
of learning.!9 Specifically, if one sees learning as an adaptive developmental
mechanism, then one should look at learning where it happens in the
everyday world. Furthermore, if learning is a process of changing one state of
a cognitive system to another, then representations of that process in
computing terms should be expected to be more apt than in other schemes

examined, one has to specify only Lhe properties of the objects which are to be used.
These properties are placed as axioms at the start. It is no longer necessary to explain
what the objects that should be studied really are.”

N. Bourbaki, in J. Fang, p. 69.

I8 See the later discussion under the heading "Feynman: on the Reality of Reflection All
Ways."

19 1f one recalls that case study is the method underlying the theories of Freud and
Piaget and that ecological studies such as those of Barker and Wright (1951) and, in our
our decades, the stunning work of Goodall (1971, 1990), it is not hard to believe that the
fusion of such methods may continue to help us learn about human development.
Ecologically oriented studies, such as those of Barker and Wright (1951, 1967), pay close
attention to the context of behavior. That context of behavior is also the primary
situation in which learning takes place and thus should be considered in detail in any
study of learning through interaction.
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where the procedural element of representation might be less important.20
One might take details of case study corpora much as one uses the boundary
conditions to specify the particular form of a solution to a differential
equation. Such is the use made of the psychological studies here, as a
foundation for the representations used in the computational models, and as
justification for focussing on key issues: the role of egocentricity, and the
inception of multi-role play by one agent as a key event.

I ask how learning is possible at all, especially if one takes seriously the
notion that knowledge depends on the particular details of experience; and
even more, how one can learn from interacting with an agent one certainly
doesn’'t understand, and probably doesn't even pay attention to ? 2! We know
such learning happens, for we see it in people every day. How could such
learning happen in a machine ? 22 The acquisition of knowledge can be
explored through machine-based modelling at a level of detail not previously
possible either through introspection or through observation.

Must we claim that learning happens in people the same way? Not
necessarily, but the virtue of machine learning studies is that such
epistemological mini-theories allow us no miracles: they can completely and

20 A straigtforward assertion of this point can be found in Minsky's Turing Award
Paper, Form and Content in Computer science, (1970). Minsky, in a talk to graduate
students in his lab (1976), mentioned that a major problem Al needed to solve was how
the control structure of mind emerged from the processes of its functioning.

21 This involves the notion of ego-centrism in young children (Piaget, 1926) and the
parallel problem that one shouldn't expect an agent to comprehend adequately another
more sophisticated than itself.

22 Putting knowledge in machines forces us to confront Lhe problem directly. You can
look inside a machine and tell precisely where the knowledge comes from, Perhaps you
will decide “the programmer put it here™: or perhaps "the programmer built a rule
system from which the new knowledge could be inferred”. You may even ultimately
decide "the programmer exploited the characteristics of the machine or the implications
of the representational scheme to give an appearance of novelty there,”. (Such is the
argument in a paper presented at the AAAT conference in 1983 by Brown and Lenat
about Lenat's well known system AM, Lenat, 1979.)
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unambiguously cover some examples of learning with mechanisms simple
enough to be comprehensible. Building epistemological models is an
exploration of the possible, according to a specification of what dimensions of
consideration might be important. The computer's aid in systematically
generating sets of all possible conditions helps liberate our view of what
possible experiences might serve as paths of learning. Feynman asked what
happened at all those other places on the reflecting surface where the angle
of incidence doesn't equal the angle of reflection. Similarly, when we can
generate all possible interactions through which learning might occur—
including some we imagine are not important, not only can we explore those

alternate paths, we must do so, especially if they don't follow the party line of
our own best current theory.

Considering All the Possibilities

The analysis that I choose to contrast with Feynman’s arose as a verbal
theory 23 of one child's learning strategic play at tic-tac-toe. It was continued
in a constructive mode through developing a computer-embodied model,
SLIM (Strategy Learner, Interactive Model). The latter was based on search
through the space of possible interactions between one programmed agent
having some of the characteristics of the subject, my daughter, and a second,
REO, a programmed Reasonably Expert Opponent. REO is expert in the sense
of being able to apply uniformly a simple set of rules for good tactical play. 24

23 This analysis was published as chapter 4 in Lawler (1985) and as a memo of the MIT
Artificial Intelligence lab, Lawler (1980). It is a detailed analysis of the complete history
of one child’'s play at tic-tac-toe throughout a two year period. The subject of the study
was my daughter Miriam.

24 The set of rule REQ follows for each execulion are, in order, these:
L. if it is possible to win --> make the winning move.
2. if the opponent can win --> block at least one threat.

3. if the center cell is blank --> move in the center cell
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Strategies for achieving specific forks are the knowledge structures of SLIM.

I represent each as having three parts: a Goal, a sequence of Actions, and a
set of Constraints on those actions (each triple is thereby a GAQ). [ simulated
such structures in a program that plays tic-tac-toe against variations of REQ.25
Applying these strategies leads to moves that often result in winning or
losing; this in turn leads to the creation of new structures, by modifying the
current GACs. The modifications are controlled by a small set of specific rules,
so that the GACs are related by the ways modifications can map from one to
another. Subject to certain limitations, I've completely explored certain
classes of strategies.2¢

The study avoided abstraction, in order to explore learning based on the
modification of fully explicit strategies learned through particular
experiences. The results are first, a catalog of specific experiences through
which learning occurs within this system and second, a description of
networks of descent of concrete strategies from one another. The catalog
permits a specification of 1). which new forks may be learned when some
predecessor is known and 2). which specific interaction gives rise to each fork

4. if a corner cell is emptly --> move in a corner cell.

5. if a side cell is empty --> move in a side cell.

For a slightly more sophisticated example of a production system which would play

following a similar set of rules. see Human Problem Solving, Newell and Simon, (1972),
p.62, Figure 3.4

25 The “variations” of REO are created by crippling specific rules representing REO's
ordered preferences for moves to the center cell (first preference), corner cells
{second) and the remainder. When rules 3 and 4 above are crippled, REO will choose any
free cell; the preferences are unstructured. When only rule 3 is crippled, REO will select
first a corner cell or the center cell and, when none of those are free, select a side cell as
a default choice. In this case REO's preferences are structured. When no rules are

crippled, REO always prefers an empty center cell to others and prefers an emptly corner
cell to side cells. In this case, the preferences are highlv structured.

26 The strategies explored focus on games in which SLIM plays the first move in cell 1.
This specific preference is based on occurrences in the case study and also on the fact
that such corner-opening play is the richest micro-domain within tic-tac-toe play.
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GACs 12 3 4. 5 6 7 8 9 10 11 12 13 14
games L, A | I | | 6 272 B i 1
wins 2Eso2wair=0 .0 @ 2 =0 22 Has)
losses | T | S | S 0 0 O ([ S | e |
draws 0 0,0 0 0 © 4 4 2 2 4 4 | 1
newGACs 1 1 0 0 0 O 2 2 0 0 0O 0 0 0
constraints 0 0 | 1 1 1 0 0 0 0 a0 a0

This is a table of wins and losses for each of 14 GACs

learned. The result obviously also depends on the specific learning algorithm
used by SLIM.

The Path of Learning

Table I shows how limited is the learning possible for SLIM playing against
REO when the latter is fully committed to playing with the complete set of
rules (REO has highly structured preferences). Forking patterns are
represented as lists of cells in the 3x3 tic-tac-toe grid, numbered 1 to 9 from
left to right and top to bottom. SLIM's strategies are represented as a list of
triples. First is a group of three cell numbers representing a pattern for a
fork. This is the Goal, e.g {1 3 9}. Second is an ordered list of those three
numbers, showing the sequence in which moves are to be made. This is the
Action-plan, e.g. [1 9 3]. Third is a list of constraints -- used to inhibit further
use of the plan when it is found faulty. The triple is the GAC (for Goal,
Action-plan, Constraint), e.g. GAC | is represented as [ {1 3 9} [1 9 3] [nil] ]
when play begins and no constraints exist. SLIM starts every simulation
knowing a single GAC. Notice that beginning with either GAC 1 or 2 only a
single new forking strategy is learned. Two others are learnable with either
GAC 7 or 8. No other forking strategies are learned.
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SLIM's Learning from Interaction: An Example

In order to evaluate specific learning mechanisms in particular cases, one
must go beyond counting outcomes; one must examine and specify which
forks are learned from which predecessors in which sequence and under
which conditions. Within the virtual universe of SLIM's simulation, consider
how the symmetrical variation to one particular fork can be learned. Suppose
that SLIM begins with the objective of developing a fork represented by the
pattern {1 3 9} and will proceed with the plan [1 9 3].27 SLIM moves first to
cell 1. No problem. REO prefers cell five, the center cell, and moves there.
SLIM moves in cell 9. Everything goes according to plan. But now, REO's
second move is to cell 3. SLIM's plan is blocked. The strategic goal (1 3 9} is
given over -- but the game is not over. SLIM, playing tactically now with the
same set of rules as REO, moves into cell 7, the only remaining corner cell.
Unknowingly, SLIM has created a fork symmetrical to its fork-goal. SLIM can
not recognize the fork. It has not the knowledge to do so. What happens ?
REO blocks one of SLIM's two ways-to-win, choosing cell 4. SLIM, playing

tactically, recognizes that it can win and moves into cell 8. This is the key
juncture.

A 2
311
o] B

SLIM moves first. SLIM's moves are letters: REQ's are numbers.

When SLIM wins a game without expecting to do so, it recognizes that the
circumstance is special; even more, SLIM assumes that it has won through

27 The implication here is that SLIM will move first to cell 1, next to cell 9, and achieve
the fork-goal by moving to cell 3.
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creating an unrecognized fork (otherwise REO would have blocked the win).
What could that fork be ? SLIM takes the pattern of its first three moves as a
fork. That pattern is made the goal of a new GAC. SLIM examines its known
plans for creating a fork (there is one; moves [1 9 3]) with the list of its own
moves, executed in sequence before the winning move was made [1 9 7|. The
terminal step of the plan is the only difference between the two. SLIM
modifies that plan terminal step to create a new plan, [{ 9 7]. SLIM now has
two GACs for future play. 22 We know the fork achieved by plans [1 9 3] and
[1 9 7] are symmetrical. SLIM has no knowledge of symmetry and no way of
knowing that the forks are related other than through descent, that is, the
derivation of the second from the first. 29

28 This example shows modification of the terminal step of the plan. A second kind of
learning removes the middle step of the plan; this is center deletion. When a new cell is
added to the plan after center deletion, two new plans are created reflecting the two
orderings of the last two steps.

29 One could call this type of machine learning "reflective plan construction”. It is part
of a long line of development which began with machine learning based on composition
of primitives or subprocedures in the sixties. | built my own first compositional models
following Selfridge’'s notions on learning counting. In that paradigm, an instructor set
a goal [or a system to reach. For every primitive and procedure it knew, the system reset
the condition of the world to its initial state and executed each in turn, then checked to
see il the world state had changed so as to meet specification of the goal. If they all
failed, it began to try their combinations systematically. When some combination of
primitives and procedures changed the world state to satisly the goal, the system created
a new procedure of those primitives and procedures executed in the successful sequence.
Satinoff (Science, 1978) presents a phvsiological example of the integration of disparate
systems for thermal regulation as an example of emergent behavior. This, of course,
represents an analagous, biological model of evolution through composition of
predecessor systems. Piaget (Biology and Knowledge, 1967, p. 321) cites much earlier
biological examples by Jackson and Sherrington. Lawler, 1979, 1985, assumes the
disparateness of cognitive structure and interpretes learning in the human case
through their interrelation. Such an explanation of learning can also be seen in
Papert's notion that Piagetian stages could be explained by the insertion of controlling
agents in networks (Mindstorms, 1980, chapter 7), a theme he discussed as early as the
sixties according to Minsky (Society of Mind, 1986, p.102).
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The Results of a Simulation with SLIM:

The primary result of SLIM's simulation is an extended listing of the the new
forks learned and the specific games through which they were learned given
SLIM's knowledge before the game. The game where GAC2 was learned
through tactical play after blockage of GAC! would appear in such as list this
way:

Original GAC Learned GAC  List of Moves in Game Process
(13919301 (17901971  [1593748] PTM

An extended list of new fork-goals generated in particular games is adeqguate
for specifying detail but somewhat opaque. It certainly does not highlight the
interrelationships among the various forks which represent their genesis
from one another.

Re-Representing the Results:

One can represent these learning paths as a tree of descent showing which
forks may be learned from given prototypes. Consequently, one can make a
tree that specifies the descent of all forks learnable from each prototype fork.
Figure 3 exhibits the learning outcomes tallied in Table I. The number
triplets are the action-plans for forks. It shows also that against a rule-driven
opponent, SLIM was able to learn very little. Specifically, starting with GAC I,
SLIM was able to learn only GAC 2 and vice versa. Only GAC 7 (and its
symmetrical variant, GAC 8) precipitated the learning of other strategies.
Consider Figure 3.
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GAC?7, which is the goal most productive of new learned strategies, does not
provide an expert win. The plan of GAC 7 merely sets traps for an unwary
opponent. But playing with GAC 7's fork as its goal, SLIM was able to learn
more than from using an expert win as a model. The less effective goal led
SLIM to exercise more alternatives which, in turn, permitted SLIM to learn
more new forks; these new forks included two that it could not learn against
this opponent from knowing either of the more effective strategies of GACs 1
and 2. These epistemological conclusions help explain why learning through
experience-with all its attendant errors and mistakes—is nonetheless so
effective.

The complete set of results then involves consideration of all paths of possible
learning, even those deemed unlikely a priori, and concludes with the
complete specification of all possible paths of learning every fork given any
fork prototype. Consideration of all paths of learning I take to be comparable

to consideration of all paths over which photon might travel when striking a
surface.
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Descent tree for GACs 1 & 2 This is a descent tree for GAC 7

vs. a high structure opponent
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Figure 4
Trees of Strategy Descent from prototype forks 1-6
Based on Play Against a Structured Opponent

Aggregating Results

The first six GACs (shown in Figure 4) form a central collection of strategies.
The tree with strategy three as top node may be taken as typical. Play in five
specific games generates the other five central GACs. The specialness of the
six central nodes is a consequence of their symmetry in respect of co-
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generability. Some of those directly generatable can generate each other: they
are reciprocally generatable. Those that are remotely generatable nonetheless
lead to each other through intermediaries; they are cyclically generatable. For
these six central strategies, the trees of structure descent can fold together
into a connected network of descent whose relations of co-generativity are
shown in Figure 5. 30

Figure 5 (redo ASAP)
Strategy Descent Network: Structured Opponent

Figure 6 summarizes the results of comparable simulations of play against an
opponent with minimal cell-preference rules. In this mode of play, where
knowledge-based preferences of REO are crippled, the “next move” decision is
reduced to random choice unless either a win is immediately possible or an
opponent victory must be blocked. In practice, for a program which generates
all possible games, play against the unstructured opponent does generate all

games, including some that would be most surprising if plaved by a
knowledgeable opponent.

30 Notice that those strategies cyclically generatable form the interconnection by GCD
(Goal-guided Center Deletion) between themselves and others reciprocally generable by
either PTM (Plan Terminal Modification) or GCD. In the [igure, solid arrows show
descent by PTM; dashed arrows show descent by GCD.
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Figure 6

Strategy Descent Network:Unstructured Opponent

Extended Caption: GACs 1 to 6 still remain central, but the flexibility of the
unstructured opponent permits SLIM to learn additional strategies. GACs 13
and 14 appear twice to simplify the network drawing. GACs 13 and 14 remain
non-learnable through experience with this opponent. The specific reason
is that SLIM’s tactical preferences remained structured in these simulations.
Thus SLIM, never trying games whose second move is to a side cell, will
never win accidentally with a fork containing such patterns; consequently,
SLIM can never learn such strategies.

The form of these descent networks is related to symmetry among forking
patterns. But they include more: they reflect the play of the opponent, the
order in which the forks are learned, and the specific learning mechanisms
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permitted in the simulations. These descent networks are summaries of
results.

Comparison and Contrast

The apparent similarities relating Feynman's analysis of reflection and the
exploratory epistemology of SLIM occur at different levels. They begin with a
focus on detail:

° in the analysis of specific cases and

. in the analysis of the interaction of objects or agents with their context.

The core principle applied in both is to try all cases and construct an
interpretation of them. There are many paths of possible learning, some
central and some peripheral. In QED, the criterion of centrality is near-
uniform directionality of the photon arrows. In SLIM, the criterion of
centrality is a different and a new one: co-generativity. The core method is
Lo aggregate results of all possibilities in a fully explicit manner. The process
of aggregation is where the differences become systematic and significant. In
QED, the aggregation of individual results is formally analytic—that is the
solution of path-integral equations of functions of complex variables 31. In

31 The Preface to Quantum Mechanics and Path Integrals (1965) provides a little history
which puts the descriptions used here in their proper perspective: ‘

“The lundamental physical and mathematical concepts which underlie the path integral
approach to quantum mechanics were first developed by R. P. Feynman in the course of
his graduate studies at Princeton... These early inquiries were involved with the
problem of the infinite self-energy of the electron. In working on that problem, a
“least-action” principal using half-advanced and half-retarded potentials was
discovered. The principle could deal successfully with the infinity arising in the
application of classical electrodynamics.

The problem then became one of applying this action principle to quantum mechanics
in such a way that classical mechanics could arise naturally as a special case of quantum
mechanics when A was allowed to go to zero,



